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Rheometrical flow systems 
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Consideration is given to the flow of viscous and elastico-viscous liquids contained 
between two infinite parallel plates which rotate with the same angular velocity 
IR about axes normal to the plates but not coincident. In the viscous case, it is 
shown that a simple exact solution of the relevant equations can be obtained. 
In  the elastico-viscous case, certain formulae are derived which should facilitate 
the interpretation of experimental results obtained from the Maxwell ortho- 
gonal rheometer. 

1. Introduction 
The orthogonal rheometer is a new instrument which was introduced by 

Maxwell & Chartoff (1965) to determine the complex dynamic viscosity q* 
of an elastico-viscous liquid. The instrument consists essentially of two flat 
parallel plates which rotate with the same angular velocity IR about two axes 
normal to the plates but not coincident. The distance between the axes is small. 
The test fluid is contained between the plates, and the two components of the 
tangential force on one of the plates are measured. From these forces, Maxwell & 
Chartoff claim that q* can be determined. An early theoretical attempt to justify 
this claim (Blyler & Kurtz 1967) was concerned with a very simple equation of 
state, and the analysis indicated that the complex viscosity could be determined 
without any restriction on the distance between the rotating axes. A later and 
more thorough analysis by Bird & Harris (1968) indicated that a limiting pro- 
cedure in terms of the distance between the rotating axes is required to deter- 
mine q*. The analyses of Blyler & Kurtz (1967) and Bird & Harris (1968) were 
both limited to situations where the effects of fluid inertia could be ignored. 

In  the present paper, we consider the flow generated in the Maxwell ortho- 
gonal rheometer for situations where fluid inertia is not negligible. In keeping with 
the earlier analyses, we base the theory on the assumption that the fluid is con- 
tained between in$nite plates, although in practice the test fluid occupies a 
finite volume, i.e. we shall ignore edge effects. 
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2. Solution for a Newtonian liquid 
We first discuss the problem for a Newtonian viscous liquid. This initial study, 

apart from indicating the method of solution for the elastico-viscous case, also 
leads to an exact solution of the Navier-Stokes equations. Since such solutions 
are rare, we thought i t  of interest to discuss this case separately, especially in view 
of the fact that it is not necessary to make any restriction on the distance between 
the axes of rotation in this case. 

All physical quantities will be referred to  cylindrical polar co-ordinates (r,  8, z) ,  
the z axis being placed symmetrically between the two axes of rotation (figure 1). 

FIGURE 1 

The upper plate, which is given by z = h, rotates about an axis through P, and 
the bottom plate given by z = 0 rotates about an axis through Q .  The distance 
between P and Q is a. In 5 3, we shall find it convenient to  restrict the discussion 
to small values of a. This is not necessary in the viscous case. 

If the physical components of the velocity vector are given by qr), v ( ~ ) ,  vb), 
the appropriate boundary conditions are 

We note that these bounda,ry conditions are exact and are not rest'ricted to small 
values of a. 
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The relevant equations for a Newtonian liquid are the Navier-Stokes equations 
given by (2)-(4) and the equation of continuity ( 5 ) .  

where p is an isotropic pressure, p the density of the fluid, g the acceleration due 
to gravity and 7 is the (constant) dynamic viscosity. 

The boundary conditions (1)  suggest a velocity distribution of the form, 

qr) = A(z)  cos 6 + B(z) sin 6, 
qq) = SZr + B(z) cos 8 - A(x) sin 6, 

VQ) = 0, 

(6) 

which automatically satisfies the equation of continuity. In  any plane z = con- 
stant, (6) is equivalent to adding a translational velocity, with components 
(A(z ) ,  B(z) )  with respect to the (z, y) axes, to the rotation about the z axis. 

i 
The boundary conditions (1) require 

(7) I A(0)  = -gQa, B(0) = 0, 

A(h) = $Qa, B(h) = 0. 

Substituting (6) into the equations of motion (2)-(4), we obtain 

-pQ2r+pSZ[A sin 8-B cos 61 = - (ap/ar)+~&4"~0~8+B"~inO],  

pQ[A cos 8 + B sin 61 = - - - + r[B" cos 6 -A" sin 81, 

(8) 

(9) 
1 3P 
r a8 

ar, 
ax 

p g =  -- 

where the dashes refer to differentiation with respect to z. We note with interest 
that (8)-(10) do not contain any non-linear terms in A(x) and Bfz). 

Eliminating p between (8)-(lo), we obtain 

pQ[A'sin 0-B' C O S ~ ]  = r[A"cos8+B"sinB], (11) 
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and pQ[A’cos8+B’sin8] = q[B”’cos8-A’’’sin8], (12)  

which imply A” + (psl/q)B’ = 0, (13) 
B” - (psz/q)  A ‘ = 0. (14) 

A” + ( p Q / r )  B = q, (15)  

B” - (pn/ r )A = s, (16)  

Aiv + (p2 Q2/q2)  A = ( - Qp/q) 8, ( 1 7 )  

BiV + (p”2/q2) B = (Qp/q) q. (18) 

Equations (13) and (14) can be integrated immediately to give 

where q and s are arbitrary constants. From (15)  and (16),  we obtain 

Equations (17)  and (18)  have to be solved subject to 

} (19) 
A ( 0 )  = -+Qa, A”(0) = q, A(h) = JQa, A”(h)’= q, 

B(0) = 0, B”(0) = ( - p W a / 2 7 ) + s ,  B(h) = 0) B”(h) = (pQZa/27)+s. 

The corresponding pressure distribution is 

p = po + (pQz+r2) -pgz + r[qr cos 19 + srsin 01, (20)  
wherep,, is a constant. We see from (20) that non-zero values ofq and s would give 
rise to a pressure gradient between the plates with a corresponding ‘Poiseuille- 
type’ flow. In order to remove the possibility of this component (and at  the same 
time ensure that the velocity distribution is symmetrical in the z = i h  plane) 
we take q = s = 0. In this case the solution is given by ( 6 )  with 

A ( z )  = ($Qa)[(sinh kz cos kz + sinh k(z - h) cos k(z - h)) sinh kh cos kh 

+ (cosh kz sin kz + cosh k(z  - h) sin k(z - h))  cosh kh sin kh]/[sinh2 kh cos2 kh 

+cosh2khsin2kh], (21)  

B(z) = (&h)[(cosh kz sin kz + cosh k(z - h)  sin k(z - h)) sinh kh cos Lh 

- (sinh kz cos kz + sinh Ic(z - h) cos k(z  - h))  cosh kh sin kh]/[sinh2 kh cos2 kh 

+ cosh2 kh sin2 kh], (22)  

The solution implies that each plane z = constant moves as if rigid with 
angular velocity !2 about a point, but the locus of these points as z varies is not a 
straight line joining the centres of the two planes. Figure 2 contains the pro- 
jection of this locus on the x, y plane for various values of kh. 

where k = (pQ2/27)4. (23)  

3. Solution for an elastico-viscous liquid 
In  the case of an elastico-viscous liquid, it is necessary to assume that the dis- 

tance a between the axes of rotation is small, so that a solution can be obtained 
by expanding the relevant physical variables as power series in a. The basic 
reason for this approximation is mathematical, in that the complicated (non- 
linear) equations of state for elastico-viscous liquids introduce non-linearities 
into the relevant equations, which are not present in the viscous case. However, 
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Bird & Harris (1968) have shown that such an approximation is also required if 
the complex dynamic viscosity is to be obtained from experimental data and these 
authors conclude that the experimental results of Maxwell & Chartoff (1965) 
were taken at sufficiently small a for effects of order u2 to be negligible. Restricting 
the discussion to very small values of ais therefore reasonable as well as necessary. 

I 

z.n ! 

I + 
xla 

FIGURE 2. The projection of the locus of the centres of rotation on the x, y plane for 
various values of kh. 

The basic equations to be considered are the equation of continuity ( 5 ) ,  
the stress equations of motion given by (24)-(26) below and the equations of state. 

t Parentheses placed round suf ies  denote physical components of tensors. 

14 FLM 40 
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When the distance between the axes of rotation is small, the deformation ex- 
perienced by individual fluid elements is also small, and if terms of order a2 

are neglected, we may take the equations of state in the form (cf. Walters 1970) 

where qt,< is the metric tensor of a suitable co-ordinate system xi and C,, is given 

bY 

x'i being the position a t  time t' of the element that is instantaneously at the 
point xi a.t time t .  We note that the relation between the kernel function HI 
and the complex dyna.mic viscosity 7" is 

7' being known as the dynamic viscosity and G' the dynamic rigidity. 
Equations ( 5 ) ,  (24)-(28) have to be solved subject to the boundary conditions 

(1). I n  the light of these boundary conditions, we are led to consider a velocity 
distribution of the form, 

I qT) = au(r, z)eio, 

where u, 'u and w may be complex and the real part is implied. In  the following, 
we shall work to first order in a. 

The displacement functions xti, which we shall write as r', 8', z',  are given by 

The solution of (32) subject to r' = r ,  0' = 19, x' = z when t' = t ,  is 
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We note from the form of the deformation tensor C,, that individual fluid ele- 
ments are subjected to a periodic deformation history although the flow is 
steady, i.e. a/at = 0 (cf. Walters 1970). 

Substituting (34) into (27)-(28) and using (30), we obtain for the physical 

Substituting (31) and (35) into the stress equations of motion (24)-(26) and writing 
p = po  -pgz + (pQ2r2/2)  + apeie we obtain 

14-2 
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We note that (36)-(38) are essentially the Navier-Stokes equations, with the 
complex dynamic viscosity q* replacing the constant viscosity coeBcient 9 

(cf. (2)-(4) ). 
If we write (cf. $2) 

u = u@), v = v(x),  w = 0, = 0, (39) 

(38) is satisfied identically, and the equation of continuity implies 

u+iv  = 0. (40) 

Also, (36) and (37) yield ufr-a2u = 0, (41) 

vw - a2v = 0, (42) 

where a2 = - iQp/q* (cf. Walters 1970). The appropriate boundary conditions 
are 

I u =  -- ?jQ, v=-&ii2 when x = O ,  

u = 1Q , v =  +iQ when z = h .  
(43) 

The solutions of (41) and (42) subject to (43) are 

(44) 
u = ($Q/sinh ah)[sinh a x  + sinh a(x - h)] ,  

v = ($iQ/sinhah)[sinhaz+sinha(z-h)]. 

The relevant stresses in the problem under consideration are the shear stresses 
pbr) and iyne), which are given by 

iapQz(cosh ax + cosh a(z - h))eie 
2a sinh ah 

I. apQ2{coshaz + cosha(z - h)}ede 
2a sinh ah Pbe, = ~e [ 

(45) 

In  the orthogonal rheometer, the two components of the tangential force on 
one of the plates are measured. Writing X and Y for the components in the x 
and y directions, respectively, we have for a plate of radius R 

Substituting (45)-(46) into (47)-(48), we obtain for the plate at  x = h (say) 

aClrR2y*a(l + coshah) 
2 sinh ah 

x - i y  = - -  (49) 

If ah is small, an approximate formula can be obtained simply by expanding 
the hyperbolic functions in powers of ah. In this way, we obtain 

arR2 Qq* [ + a2h2 a4h*] 
(50) --__ 

h 12 720 ' 
x - i Y  = 
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where terms of order a6h6 have been ignored. When fluid inertia is negligible, 
we have 

(51 1 
or X = (a!hR2/h)~’ ,  ( 5 2 )  

Y = (anR2/h)G‘, (53) 

X - i Y = (aChR2/h)v* 

which are essentially the same as the expressions given by Bird & Harris (1968). 
We see from (52) and (53) that the orthogonal rheometer can be used to deter- 

mine directly the dynamic viscosity and dynamic rigidity when fluid inertia is 
negligible and (49) or (50) are now available to interpret experimental results 
in situations where fluid inertia is important. 

We have benefitted from several discussions with Mr M. J. Davies, Dr D. F. 
Griffiths and Dr R. S. Jones. We acknowledge the referees’ helpful comments. 

REFERENCES 

BIRD, R. B. & HARRIS, E. K. 1968 Am. Inst. Chern. Eng. J .  14, 758. 
BLYLER, L. L. & KunTz, S .  J. 1967 J .  Appl. Polyrn. Sci. 11, 127. 
MAXWELL, B. & CHARTOFF, R. P. 1965 Tram. SOC. Rheol. 9, 41. 
OLDROYD, J. G. 1950 PTOC. Roy. SOC. Lond. A 200, 523. 
WALTERS, K. 1970 J .  Fluid Mech. 40, 191. 




